Наука

Число Пи и его загадка. Вся Вселенная в числе Пи.

***

Что общего между колесом от Лады Приоры, обручальным кольцом и блюдцем вашего кота? Вы, конечно, скажете красота и стиль, но я осмелюсь с вами поспорить. Число Пи! Это число, объединяющее все окружности, круги и округлости, к коим в частности можно отнести и мамино кольцо, и колесо от любимой папиной машины и даже блюдце любимого кота Мурзика. Готов поспорить, что в рейтинге самых популярных физических и математических констант число Пи несомненно займет первую строчку. Но что скрывается за ним? Может какие-то страшные ругательства математиков? Давайте попробуем разобраться в этом вопросе.

Что же такое число «Пи» и откуда оно взялось?

Современное обозначение числа π (Пи) появилось благодаря английскому математику Джонсону в 1706 году.


о первая буква греческого слова περιφέρεια  (периферия, или окружность). Для тех, кто проходил математику давно, да и к тому же мимо, напомним, что число Пи — это отношение длины окружности к её диаметру. Величина является константой, то есть постоянна для любой окружности, независимо от её радиуса. Люди знали об этом еще в древности. Так в древнем Египте число Пи принимали равным отношению 256/81, а в ведических текстах приводится значение 339/108, Архимед же предлагал соотношение 22/7. Но ни эти, ни многие другие способы выражения числа Пи не давали точный результат.

Оказалось, что число Пи трансцендентное, соответственно, и иррациональное. А это значит, его нельзя представить в виде простой дроби. Если же его выразить через десятичную, то последовательность цифр после запятой устремятся в бесконечность, к тому же периодически не повторяясь. Что все это значит? Очень просто. Хотите узнать номер телефона понравившейся девушки? Его наверняка можно найти в последовательности цифр после запятой числа Пи.

Мой номер в числе Пи

Телефон можно посмотреть здесь ↓

Вообще это может быть не только номер телефона, а любая информация, закодированная с помощью цифр.


примеру, если представить все произведения Александра Сергеевича Пушкина в цифровом виде, то они хранились в числе Пи еще до того, как он их написал, даже до того, как он родился. В принципе, они хранятся там до сих пор. Кстати, ругательства математиков в π тоже присутствуют, да и не только математиков. Словом, в числе Пи есть всё, даже мысли, которые посетят вашу светлую голову завтра, послезавтра, через год, а может, через два. В это очень трудно поверить, но даже если мы представим, что поверили, еще труднее будет получить оттуда информацию и расшифровать её. Так что вместо того, чтобы копаться в этих цифрах, может проще подойти к понравившейся девушке и спросить у неё номер?.. Но для тех, кто не ищет легких путей, ну или просто интересующихся, чему же равно число Пи, предлагаю несколько способов его вычисления. Считайте на здоровье.

Чему равно число Пи? Методы его вычисления:

1. Экспериментальный метод. Если число Пи это отношение длины окружности к её диаметру, то первый, пожалуй, самый очевидный способ нахождения нашей загадочной константы будет вручную произвести все измерения и вычислить число Пи по формуле π=l/d. Где l — длина окружности, а d — её диаметр. Все очень просто, необходимо лишь вооружится ниткой для определения длины окружности, линейкой для нахождения диаметра, и, собственно, длины самой нитки, ну и калькулятором, если у вас проблемы с делением в столбик. В роли измеряемого образца может выступить кастрюля или банка из под огурцов, неважно, главное? чтоб в основании была окружность.


Рассмотренный способ вычисления самый простой, но, к сожалению, имеет два существенных недостатка, отражающихся на точности полученного числа Пи. Во-первых, погрешность измерительных приборов (в нашем случае это линейка с ниткой), а во-вторых, нет никакой гарантии, что измеряемая нами окружность будет иметь правильную форму. Поэтому не удивительно, что математика подарила нам множество других методов вычисления π, где нет нужды производить точные измерения.

2. Ряд Лейбница. Существует несколько бесконечных рядов, позволяющих точно вычислять число Пи до большого количества знаков после запятой. Одним из самых простых рядов является ряд Лейбница. π = (4/1) — (4/3) + (4/5) — (4/7) + (4/9) — (4/11) + (4/13) — (4/15) …
Все просто: берем дроби с 4 в числителе (это то что сверху) и одним числом из последовательности нечетных чисел в знаменателе (это то что снизу), последовательно складываем и вычитаем их друг с другом и получаем число Пи. Чем больше итераций или повторений наших нехитрых действий, тем точнее результат. Просто, но не эффективно, к слову, необходимо 500000 итераций чтоб получить точное значение числа Пи с десятью знаками после запятой. То есть, нам придется несчастную четверку разделить аж 500000 раз, а помимо этого полученные результаты мы должны будем 500000 раз вычитать и складывать. Хотите попробовать?


3. Ряд Нилаканта. Нет времени возится с рядом Лейбница? Есть альтернатива. Ряд Нилаканта, хотя он немного сложнее, но позволяет быстрее получить нам искомый результат. π = 3 + 4/(2*3*4) — 4/(4*5*6) + 4/(6*7*8) — 4/(8*9*10) + 4/(10*11*12) — (4/(12*13*14) … Думаю, если внимательно посмотреть на приведенный начальный фрагмент ряда, все становится ясным, и комментарии излишни. По этому идем дальше.

4. Метод «Монте-Карло» Довольно интересным методом вычисления числа Пи является метод Монте Карло. Столь экстравагантное название ему досталось в честь одноименного города в королевстве Монако. И причина тому случайность. Нет, его не назвали случайно, просто в основе метода лежат случайные числа, а что может быть случайней чисел, выпадающих на рулетках казино Монте Карло? Вычисление числа Пи не единственное применение этого метода, так в пятидесятых годах его использовали при расчетах водородной бомбы. Но не будем отвлекаться.

Возьмем квадрат со стороной, равной 2r, и впишем в него круг радиусом r. Теперь если наугад ставить точки в квадрате, То вероятность P того, что точка угодит в круг, есть отношение площадей круга и квадрата. P=Sкр/Sкв=2πr2/(2r)2=π/4.


Теперь отсюда выразим число Пи π=4P. Остается только получить экспериментальные данные и найти вероятность Р как отношение попаданий в круг Nкр к попаданиям в квадрат Nкв. В общем виде расчетная формула будет выглядеть следующим образом: π=4Nкр / Nкв.

Хочется отметить, что для того, чтобы реализовать этот метод, в казино идти необязательно, достаточно воспользоваться любым более или менее приличным языком программирования. Ну а точность полученных результатов будет зависеть от количества поставленных точек, соответственно, чем больше, тем точнее. Желаю удачи ?

Число Тау (Вместо заключения).

Люди, далекие от математики, скорее всего не знают, но так сложилось, что число Пи имеет брата, который больше его в два раза. Это число Тау(τ) , и, если Пи — это отношение длины окружности к диаметру, то Тау — это отношение этой длины к радиусу. И на сегодняшний день есть предложения некоторых математиков отказаться от числа Пи и заменить его на Тау, так как это во многом более удобно. Но пока это только предложения, и как говорил Лев Давидович Ландау: «Новая теория начинает господствовать тогда, когда вымрут сторонники старой».

Запоминание Пи


Рекорд в запоминании цифр после запятой принадлежит Раджвиру Мине из Индии, которому удалось запомнить 70 000 цифр – он поставил рекорд двадцать первого марта 2015 года. До этого рекордсменом был Чао Лу из Китая, которому удалось запомнить 67 890 цифр – этот рекорд был поставлен в 2005-м. Неофициальным рекордсменом является Акира Харагучи, записавший на видео свое повторение 100 000 цифр в 2005-м и не так давно опубликовавший видео, где ему удается вспомнить 117 000 цифр. Официальным рекорд стал бы только в том случае, если бы это видео было записано в присутствии представителя книги рекордов Гиннеса, а без подтверждения он остается лишь впечатляющим фактом, но не считается достижением. Энтузиасты математики любят заучивать цифру Пи. Многие люди используют различные мнемонические техники, к примеру стихи, где количество букв в каждом слове совпадает с цифрами Пи. В каждом языке существуют свои варианты подобных фраз, которые помогают запомнить как первые несколько цифр, так и целую сотню.

Пи

Существует язык Пи

Увлеченные литературой математики изобрели диалект, в котором число букв во всех словах соответствует цифрам Пи в точном порядке. Писатель Майк Кит даже написал книгу Not a Wake, которая полностью создана на языке Пи. Энтузиасты такого творчества пишут свои произведения в полном соответствии количества букв значению цифр. Это не имеет никакого прикладного применения, но является достаточно распространенным и известным явлением в кругах увлеченных ученых.

Окружность

Экспоненциальный рост


Пи — это бесконечное число, поэтому люди по определению не смогут никогда установить точные цифры этого числа. Однако количество цифр после запятой сильно увеличилось со времен первого использования Пи. Еще вавилоняне им пользовались, но им было достаточно дроби в три целых и одну восьмую. Китайцы и создатели Ветхого Завета и вовсе ограничивались тройкой. К 1665 году сэр Исаак Ньютон вычислил 16 цифр Пи. К 1719 году французский математик Том Фанте де Ланьи вычислил 127 цифр. Появление компьютеров радикальным образом улучшило знания человека о Пи. С 1949 года по 1967-й количество известных человеку цифр стремительно выросло с 2037 до 500 000. Не так давно Петер Труэб, ученый из Швейцарии, смог вычислить 2,24 триллиона цифр Пи! На это потребовалось 105 дней. Разумеется, это не предел. Вполне вероятно, что с развитием технологий будет возможно установить еще более точную цифру — так как Пи бесконечно, предела точности просто не существует, и ограничить ее могут лишь технические особенности вычислительной техники.

Число

Вычисление Пи вручную

Если вы хотите найти число самостоятельно, вы можете использовать старомодную технику – вам потребуются линейка, банка и веревка, можно также использовать транспортир и карандаш.


нус использования банки в том, что она должна быть круглой, и точность будет определяться тем, насколько хорошо человек может наматывать веревку вокруг нее. Можно нарисовать окружность транспортиром, но и это требует навыков и точности, так как неровная окружность может серьезно исказить ваши измерения. Более точный метод предполагает использование геометрии. Разделите круг на множество сегментов, как пиццу на кусочки, а потом вычислите длину прямой линии, которая превратила бы каждый сегмент в равнобедренный треугольник. Сумма сторон даст приблизительное число Пи. Чем больше сегментов вы используете, тем более точным получится число. Разумеется, в своих вычислениях вы не сможете приблизиться к результатам компьютера, тем не менее эти простые опыты позволяют более детально понять, что вообще представляет собой число Пи и каким образом оно используется в математике.Окружность

Открытие Пи

Древние вавилоняне знали о существовании числа Пи уже четыре тысячи лет назад. Вавилонские таблички исчисляют Пи как 3,125, а в египетском математическом папирусе встречается число 3,1605. В Библии число Пи дается в устаревшей длине – в локтях, а греческий математик Архимед использовал для описания Пи теорему Пифагора, геометрическое соотношение длины сторон треугольника и площади фигур внутри и снаружи кругов. Таким образом, можно с уверенностью сказать, что Пи является одним из наиболее древних математических понятий, хоть точное название данного числа и появилось относительно недавно.

Пи

Новый взгляд на Пи


Еще до того, как число Пи стали соотносить с окружностями, у математиков уже было множество способов даже для наименования этого числа. К примеру, в старинных учебниках по математике можно найти фразу на латыни, которую можно грубо перевести как «количество, которое показывает длину, когда на него умножается диаметр». Иррациональное число прославилось тогда, когда швейцарский ученый Леонард Эйлер использовал его в своих трудах по тригонометрии в 1737 году. Тем не менее греческий символ для Пи все еще не использовали – это произошло только в книге менее известного математика Уильяма Джонса. Он использовал его уже в 1706 году, но это долго оставалось без внимания. Со временем ученые приняли такое наименование, и теперь это наиболее известная версия названия, хотя прежде его называли также лудольфовым числом.

Окружность

Нормальное ли число Пи?

Число Пи определенно странное, но насколько оно подчиняется нормальным математическим законам? Ученые уже разрешили многие вопросы, связанные с этим иррациональным числом, но некоторые загадки остаются.


примеру, неизвестно, насколько часто используются все цифры – цифры от 0 до 9 должны использоваться в равной пропорции. Впрочем, по первым триллионам цифр статистика прослеживается, но из-за того, что число бесконечное, доказать точно ничего невозможно. Есть и другие проблемы, которые пока ускользают от ученых. Вполне возможно, что дальнейшее развитие науки поможет пролить на них свет, но на данный момент это остается за пределами человеческого интеллекта.

Окружность

Пи звучит божественно

Ученые не могут ответить на некоторые вопросы о числе Пи, тем не менее с каждым годом они все лучше понимают его суть. Уже в восемнадцатом веке была доказана иррациональность этого числа. Кроме того, было доказано, что число является трансцендентным. Это означает, что нет определенной формулы, которая позволила бы подсчитать Пи с помощью рациональных чисел.Число

Недовольство числом Пи

Многие математики просто влюблены в Пи, но есть и те, кто считает, что у этих цифр нет особенной значимости. Кроме того, они уверяют, что число Тау, которое в два раза больше Пи, более удобное в использовании как иррациональное. Тау показывает связь длины окружности и радиуса, что, по мнению некоторых, представляет более логичный метод исчисления. Впрочем, однозначно определить что-либо в данном вопросе невозможно, и у одного и у другого числа всегда будут сторонники, оба метода имеют право на жизнь, так что это просто интересный факт, а не повод думать, что пользоваться числом Пи не стоит.


Похожие посты

Сопровождали хозяина в загробном мире: на Иберийском полуострове нашли массовое погребение собак

Avtor

ГАЗ показал новое поколение маршруток: такого ещё никто не делал

Avtor

«Хаббл» запечатлел Марс и Сатурн в противостоянии

Avtor
Adblock
detector