Наука

Полистирол листовой, его свойства и применение

В широком разнообразии полимерных материалов особое место занимает полистирол. Из этого материала производят огромное количество различных пластиковых изделий как для бытового, так и для промышленного использования. Сегодня мы с вами познакомимся с формулой полистирола, его свойствами, способами получения и направлениями использования.

«>

Общая характеристика

Полистирол является синтетическим полимером, относящимся к классу термопластов. Как можно понять из названия, он представляет собой продукт полимеризации винилбензола (стирола). Это твердый стеклообразный материал. Формула полистирола в общем виде выглядит следующим образом: [СН2СН(С6Н5)]n. В сокращенном варианте она выглядит так: (C8H8)n. Сокращенная формула полистирола встречается чаще.

Химические и физические свойства

Наличие фенольных групп в формуле структурного звена полистирола препятствует упорядоченному размещению макромолекул и образованию кристаллических структур. В этой связи материал является жестким, но хрупким. Он представляет собой аморфный полимер с малой механической прочностью и высоким уровнем светопропускания. Он производится в виде прозрачных цилиндрических гранул, из которых путем экструзии получают необходимую продукцию.


Полистирол является хорошим диэлектриком. Он растворяется в ароматических углеводородах, ацетоне, сложных эфирах, и собственном мономере. В низших спиртах, фенолах, алифатических углеводородах, а также простых эфирах полистирол не растворим. При смешивании вещества с другими полимерами, происходит «сшивание», в результате которого образуются сополимеры стирола, обладающие более высокими конструктивными качествами.

«>

Вещество обладает низким влагопоглощением и устойчивостью к радиоактивному облучению. Вместе с тем оно разрушается под действием ледяной уксусной, и концентрированной азотной кислот. При воздействии ультрафиолета полистирол портится – на поверхности образуется микротрещины и желтизна, увеличивается его хрупкость. При нагревании вещества до 200 °С оно начинает разлагаться с выделением мономера. При этом, начиная с температуры в 60 °С, полистирол теряет форму. При нормальной температуре вещество не токсично.

Основные свойства полистирола:

  1. Плотность – 1050-1080 кг/м3.
  2. Минимальная рабочая температура – 40 градусов мороза.
  3. Максимальная рабочая температура – 75 градусов тепла.
  4. Теплоемкость – 34*103Дж/кг*К.
  5. Теплопроводность – 0,093-0,140 Вт/м*К.
  6. Коэффициент термического расширения – 6*10-5Ом·см.

Получение полистирола

В промышленности полистирол получают с помощью радикальной полимеризации стирола. Современные технологии позволяют проводить этот процесс с минимальным количеством непрореагировавшего вещества. Реакция получения полистирола из стирола осуществляется тремя способами. Рассмотрим отдельно каждый из них.

«>

Эмульсионный (ПСЭ)

Это самый старый метод синтеза, который так и не получил широкого промышленного применения. Эмульсионный полистирол получают в процессе полимеризации стирола в водных растворах щелочей при температуре 85-95 °С. Для этой реакции необходимы такие вещества: вода, стирол, эмульгатор и инициатор процесса полимеризации. Стирол предварительно избавляют от ингибиторов (гидрохинона и трибутил-пирокатехина). Инициаторами реакции выступают водорастворимые соединения. Как правило, это персульфат калия или двуокись водорода. В качестве эмульгаторов применяют щелочи, соли сульфокислот и соли жирных кислот.

Процесс происходит следующим образом.


реактор наливают водный раствор касторового масла и при тщательном перемешивании вводят стирол вместе с инициаторами полимеризации. Полученную смесь греют до 85-95 градусов. Растворенный в мицеллах мыла мономер, поступая из капель эмульсии, начинает полимеризоваться. Так получаются полимер-мономерные частицы. На протяжении 20 % времени реакции мицеллярное мыло идет на образование слоев адсорбции. Далее процесс идет внутри частиц полимера. Реакция завершается, когда содержание стирола в смеси будет составлять примерно 0,5 %.

Далее эмульсия поступает на стадию осаждения, позволяющую снизить содержание остаточного мономера. С этой целью ее коагулируют раствором соли (поваренной) и высушивают. В результате получается порошкообразная масса с размером частиц до 0,1 мм. Остаток щелочи сказывается на качестве получаемого материала. Устранить примеси полностью невозможно, а их наличие обуславливает желтоватый оттенок полимера. Этот метод позволяет получить продукт полимеризации стирола с наибольшей молекулярной массой. Получаемое таким способом вещество имеет обозначение ПСЭ, которое периодически можно встретить в технических документах и старых учебниках по полимерам.

«>

Суспензионный (ПСС)

Этот метод осуществляется по периодической схеме, в реакторе, оборудованном мешалкой и теплоотводящей рубашкой. Для подготовки стирола его суспензируют в химически чистой воде с помощью стабилизаторов эмульсии (поливиниловый спирт, полиметакрилат натрия, гидроксид магния), а также инициаторов полимеризации.


оцесс полимеризации проходит под давлением, при постоянном повышении температуры, вплоть до 130 °С. В итоге получается суспензия, из которой первичный полистирол отделяют с помощью центрифугирования. После этого вещество промывают и высушивают. Этот метод также считается устаревшим. Он пригоден в основном для синтезирования сополимеров стирола. Его применяют в основном в производстве пенополистирола.

Блочный (ПСМ)

Получение полистирола общего назначения в рамках этого метода можно проводить по двум схемам: полной и неполной конверсии. Термическая полимеризация по непрерывной схеме осуществляется на системе, состоящей из 2-3 последовательно соединенных колонных аппаратов-реакторов, каждый из которых оборудован мешалкой. Реакцию проводят постадийно, увеличивая температуру с 80 до 220 °С. Когда степень превращения стирола доходит до 80-90 %, процесс прекращается. При методе неполной конверсии степень полимеризации достигает 50-60 %. Остатки непрореагировавшего стирола-мономера удаляют из расплава путем вакуумирования, доводя его содержание до 0,01-0,05 %. Полученный блочным методом полистирол отличается высокой стабильностью и чистотой. Эта технология является наиболее эффективной, в том числе и потому, что практически не имеет отходов.

«>

Применение полистирола


Полимер выпускается в виде прозрачных цилиндрических гранул. В конечные изделия их перебарывают путем экструзии или литья, при температуре 190-230 °С. Из полистирола производят большое количество пластиков. Распространение он получил благодаря своей простоте, невысокой цене и широкому ассортименту марок. Из вещества получают массу предметов, которые стали неотъемлемой частью нашей повседневной жизни (детские игрушки, упаковка, одноразовая посуда и так далее).

Полистирол широко используют в строительстве. Из него делают теплоизоляционные материалы – сэндвич-панели, плиты, несъемные опалубки и прочее. Кроме того, из данного вещества производят отделочные декоративные материалы – потолочные багеты и декоративную плитку. В медицине полимер используют для производства одноразовых инструментов и некоторых деталей в системах переливания крови. Вспененный полистирол также применяют в системах для очистки воды. В пищевой промышленности используют тонны упаковочного материала, сделанного из данного полимера.

Существует и ударопрочный полистирол, формула которого изменяется путем добавления бутадиенового и бутадиенстирольного каучука. На этот вид полимера приходится более 60 % всего производства полистирольного пластика.

Благодаря предельно низкой вязкости вещества в бензоле можно получить подвижные растворы в придельных концентрациях. Этим обуславливается использование полистирола в составе одного из видов напалма. Он играет роль загустителя, у которого по мере увеличения молекулярной массы полистирола уменьшается зависимость «вязкость-температура».

«>

Преимущества


Белый термопластичный полимер может стать отличной заменой пластику ПВХ, а прозрачный – оргстеклу. Популярность вещество получило главным образом благодаря гибкости и легкости в обработке. Оно отлично формуется и обрабатывается, предотвращает потери тепла и, что немаловажно, имеет низкую стоимость. Благодаря тому, что полистирол может хорошо пропускать свет, его даже используют в остеклении зданий. Однако размещать такое остекление на солнечной стороне нельзя, так как под действием ультрафиолета вещество портится.

Полистирол давно используется для изготовления пенопластов и сопутствующих материалов. Теплоизоляционные свойства полистирола во вспененном состоянии, позволяют использовать его для утепления стен, пола, кровли и потолков, в зданиях различного назначения. Именно благодаря обилию утеплительных материалов, во главе которых стоит пенополистирол, простые обыватели знают о рассматриваемом нами веществе. Эти материалы отличаются простой в использовании, устойчивостью к гниению и агрессивным средам, а также отличными теплоизоляционными свойствами.

Недостатки

Как и у любого другого материала, у полистирола есть недостатки. Прежде всего, это экологическая небезопасность (речь идет об отсутствии методов безопасной утилизации), недолговечность и пожароопасность.

Переработка

Сам по себе полистирол не представляет опасности для окружающей среды, однако некоторые продукты, полученные на его основе, требуют особого обращения.

Отходы материала и его сополимеров накапливаются в виде изделий, вышедших из употребления, и промышленных отходов. Вторичное использование полистирольных пластиков, производится несколькими путями:


  1. Утилизация промышленных отходов, которые были сильно загрязнены.
  2. Переработка технологических отходов методами литья, экструзии и прессования.
  3. Утилизация изношенных изделий.
  4. Утилизация смешанных отходов.

«>

Вторичное применение полистирола позволяет получить новые качественные изделия со старого сырья, не загрязняя при это окружающую среду. Одним из перспективных направлений переработки полимера является производство полистиролбетона, который применяется в строительстве зданий малой этажности.

Продукты разложения полимера, образующиеся при термодеструкции или термоокислительной деструкции, токсичны. В процессе переработки полимера путем частичной деструкции могут выделяться пары бензола, стирола, этилбензола, оксида углерода и толуола.

Сжигание

При сжигании полимера выделяется диоксид углерода, монооксид углерода и сажа. В общем виде уравнение реакции горения полистирола выглядит так: (С8Н8 )n + О2 = ↑СО2 + Н2О. Сжигание полимера, содержащего добавки (компоненты увеличивающие прочность, красители и т. д.), приводит к выбросу ряда других вредных веществ.

Краткий исторический очерк


Впервые полистирол был получен в Германии еще в 1839 г., однако его промышленное производство термической полимеризацией стирола было освоено только в 1920 г. (по патенту Остромысленского).

Большим стимулом для увеличения объема производства стирола и полистирола послужила организация в США во время Второй мировой войны производства бутадиен-стирольного каучука.

В СССР исследования в области синтеза и полимеризации стирола проводились в 30—40-х годах Залкиндом, Зелинским, Ваншейдтом и др. Промышленное производство полистирола развернулось в послевоенные годы.

В 50—60-х годах были разработаны процессы производства сополимеров стирола с другими виниловыми мономерами, совмещения полистирола и сополимеров стирола с акрилонитрилом и каучуками, получен изотактический полистирол. Это позволило значительно улучшить механическую прочность полистирола, повысить его теплостойкость.

В 1980-х наибольшее распространение получил ударопрочный полистирол, производимый в промышленности привитой сополимеризацией стирола или стирола и акрилонитрила к бутадиеновому каучуку.

В 1980-х гг в СССР были освоены непрерывные процессы получения гомо- и сополимеров стирола в аппаратах большой единичной мощности, обеспечивающих высокую производительность и хорошее качество полистирольных продуктов.


Получение полистирола (полимеризация стирола)


Стирол может полимеризоваться как по радикальному, так и по ионному механизмам. Полимер, получаемый полимеризацией по радикальному механизму, имеет атактическую структуру и является аморфным; полимер, получаемый ионно-координационной полимеризацией, в зависимости от типа катализатора, может быть аморфным или кристаллическим (изотактическим).

Аморфный полистирол получают разными способами — в блоке (в массе), эмульсии, суспензии или растворе в присутствии инициаторов, или без них (путем термической полимеризации).

Изотактический полистирол получают в присутствии стереоспецифических катализаторов Циглера — Натта. В процессе переработки при нагревании выше температуры плавления  (около 250 °С) изотактический полистирол необратимо переходит в аморфное состояние, что ограничивает его применение.

В промышленности полимеризацию стирола осуществляют в блоке, эмульсии и суспензии. Полимеризация в растворе не нашла широкого применения, так как получаемый полимер имеет сравнительно небольшую молекулярную массу и выделение его из раствора представляет значительные трудности. К тому же раствор полистирола (например, лак, клей) не может быть использован из-за низкой ударной прочности образующегося лакового покрытия, клеевого шва.

Наиболее перспективными промышленными методами получения полистирола являются:


  1. блочная полимеризация стирола с неполной конверсией мономера (непрерывный способ);
  2.  суспензионная полимеризация стирола (периодический способ);
  3.  блочно-суспензионная полимеризация стирола (периодический способ).

Блочная полимеризация стирола с полной конверсией мономера практически утратила свое значение в связи с малой интенсивностью процесса и получением полимера со свойствами, не отвечающими современным требованиям.

В последнее время все большее значение приобретает суспензионная полимеризация стирола (периодический способ) в аппаратах большой единичной мощности (100 м3 и более).

Эмульсионная полимеризация стирола (периодический способ) находит в промышленности гораздо меньшее применение, чем блочная, суспензионная и блочно-суспензионная.

Эмульсионный полистирол используется только для изготовления плиточных пенопластов конструкционного назначения, где требуется полимер с высокой молекулярной массой. Производство эмульсионного полистирола включает трудоемкие стадии сушки тонкодисперсного полимера и очистки большого количества сточных вод, загрязненных токсичным стиролом и другими веществами. Необходимость предварительной грануляции тонкодисперсного эмульсионного полистирола перед его переработкой также создает определенные технологические трудности. Получаемый эмульсионный полистирол имеет худшие диэлектрические свойства, чем полистирол, синтезируемый блочным и суспензионным способами.


Свойства полистирола

Полистирол представляет собой твердый аморфный продукт плотностью 1050—1080 кг/м3. Молекулярная масса промышленных марок полистирола зависит от способа его получения и колеблется в пределах от 50 000 до 300 000. Исключение составляет эмульсионный полистирол, молекулярная масса которого может быть значительно выше.

Большое влияние на свойства полистирола оказывает его полидисперсность, которая у блочного полистирола довольно значительна.

Для промышленных марок полистирола молекулярно-массовое распределение, характеризующееся соотношение     М̅w/M̅n, соответствует 2-4 (в зависимости от условий получения).

Присутствие низкомолекулярных фракций в полимере:

  • уменьшает разрушающее напряжение при растяжении, ударе, изгибе;
  • снижает теплостойкость полистирола.

 В связи с этим усовершенствования технологического процесса получения блочного полистирола направлены на снижение его полидисперсности.

В технике применяют полистирол с показателем текучести расплава 2—30.

В присутствии катализаторов Циглера — Натта получается изотактический кристаллический полистирол, который отличается от аморфного повышенной температурой плавления (230— 240 °С) и более высокими механическими показателями. Однако изотактический полистирол трудно перерабатывается в изделия.

Показатели основных свойств полистирола общего назначения, полученного различными способами, приведены в таблице 1.

Таблица 1: Физико-механические свойства полистирола, полученного разными методами

Показатель Полистирол
Блочный Эмульсионный Суспензионный
Плотность, кг/м3 1050—1060 1050—1070 1050—1060
Разрушающее напряжение при растяжении, МПа 39,2 39,2—44 41,1
Ударная вязкость, кДж/м2 19,6—21,6 21,6 19,6—27,4
Относительное удлинение при разрыве, % 2,0 2,0 2,0
Твердость по Бринеллю, МПа 137—157 137—196 137—157
Теплостойкость по Вика, °С 95-100 100-105 105
Тангенс угла диэлектрических потерь при 106 Гц 4·10-4 2·10-4—3·10-4 4·10-4
Диэлектрическая проницаемость при 106 Гц 2,4-2,7 2,6 2,5-2,6
Содержание остаточного мономера, % 0,5—0,8* 0,15-0,2 0,1-0,5
Водопоглощение за 24 ч, % 0 0,07 0,01-0,02

 * При применении вакуум-камеры или экструдеров с вакуум-отсосом содержание стирола в полистироле снижается до 0,2%.

Для повышения прочности при производстве полистирольных пленок и нитей полимер подвергают ориентации.

Полистирол характеризуется высокими диэлектрическими показателями, химической стойкостью, водостойкостью и хорошими оптическими свойствами.

Диэлектрические свойства полистирола

Он является очень хорошим диэлектриком. Его диэлектрические свойства не зависят от влажности окружающей среды и практически не изменяются при температурах от —80 до 90 °С и при изменении частоты от 1·102 до 1·109  Гц. Диэлектрические показатели эмульсионного полистирола ниже, чем блочного к суспензионного.

Стойкость полистирола к действию кислот и растворителей

Полистирол обладает высокой кислото- и щелочестойкостью, он стоек к неорганическим неокисляющим кислотам (соляной, серной, плавиковой), а также к спиртам и солям. Однако полистирол растворяется в тетрахлориде углерода, бензоле, нестоек к действию простых и сложных эфиров, ароматических, алифатических и хлорированных углеводородов. Он довольно легко окисляется, сульфируется, галогенируется, нитруется.

Оптические свойства полистирола

Блочный полистирол прозрачен, бесцветен, он пропускает 90% видимой части света. В ультрафиолетовой и инфракрасной областях прозрачность полистирола ниже. Высокий показатель преломления nD25=1,5—1,6 обусловливает применение блочного полистирола для изготовления оптических стекол.

Недостатки полистирола

Недостатками полистирола являются низкие теплостойкость и ударная прочность, склонность к старению.

Термоустойчивость полистирола

Теплостойкость полистирола по Мартенсу не превышает 70—75 °С. Эмульсионный полистирол более теплостоек (на 5—10°С), чем блочный, вследствие его большей молекулярной массы и меньшей полидисперсности. Однако этого слишком мало, чтобы обеспечить его более широкое применение.

Температура стеклования полистирола 80—82°С;

Температура эксплуатации изделий из полистирола не должна превышать 60 °С (на 10—15°С ниже теплостойкости по Мартенсу).

При нагревании до 300—400 °С полистирол деполимеризуется с образованием мономера.

Прочность полистирола

Ударная вязкость полистирола составляет всего 19,6— 27,4 кДж/м2. В процессе эксплуатации его хрупкость увеличивается из-за старения полимера. В связи с этим применение полистирола общего назначения в качестве конструкционного материала ограничено.

По сравнению с другими термопластами полистирол обладает высокой поверхностной твердостью. Его модуль упругости при растяжении довольно высок (12,9-103 МПа), а относительное удлинение при разрыве мало (1,5%); разрушающее напряжение при растяжении с повышением температуры уменьшается.


Переработка полистирола

Полистирол легко перерабатывается в изделия всеми способами, применяемыми для переработки термопластов. Основным методом его переработки в изделия является литье под давлением.

Экструзией полистирола через кольцевую или плоскую щелевую головку (или решетку) получают пленку (или нити). На выходе из экструдера полистирольные пленки и нити подвергаются растяжению, при котором происходит ориентация макромолекул. Это приводит к значительному упрочнению пленок и нитей в направлении растяжения и увеличению их гибкости.

Полистирольные пленки толщиной 10—100 мкм, получаемые ориентацией в двух перпендикулярных направлениях, называются стирофлексом. Они отличаются большой прочностью и высокими диэлектрическими показателями.

Для окрашивания полистирола применяют красители: красный С, тиоиндиго, жировой желтый Ж и др. При синтезе полистирола блочным способом его окрашивание проводят в экструдере путем подачи с помощью шнека расплава, представляющего собой концентрированную смесь полистирола, красителя и стабилизатора.

Окрашивание суспензионного полистирола осуществляют его предварительным смешением с красителем (опудривание) с последующим гранулированием в экструдере.


Области применения полистирола

полистиролПолистирол широко используется в качестве электроизоляционного материала для высокочастотной техники. Основными потребителями полистирола как диэлектрика являются приборостроительная промышленность (детали электро- и радиоэлектронных приборов, пленка для изготовления конденсаторов) и кабельная промышленность (изоляция кабелей стирофлексом и нитями).

Полистирол используется как конструкционный материал в промышленности строительных материалов для изготовления деталей, не работающих под большими механическими нагрузками (панели, облицовочные плитки, дверные ручки и др.)

Высокий показатель преломления блочного полистирола позволяет использовать его для изготовления оптических стекол.

Полистирол широко применяется для производства изделий бытового назначения: посуды, галантереи, игрушек, тары и т. п.

Для электроизоляционных и антикоррозионных целей используются полистирольные лаки.

Эмульсионный полистирол широко применяется в производстве некоторых марок пенополистирола прессовым методом.

Пенополистирол используется в качестве теплоизоляционного материала в строительной технике, железнодорожных вагонах и холодильниках.

Блочный полистирол имеет самое высокое содержание остаточного мономера, поэтому применение его в пищевой промышленности ограничено. Для производства изделий, контактирующих с пищевыми продуктами, используется главным образом суспензионный полистирол.

Для изготовления технических деталей и множества изделий бытового назначения используется блочный полистирол.

Для улучшения свойств полистирола, например повышения теплостойкости, в него вводят минеральные наполнители: мраморную пыль, слюдяную и кварцевую муку, тальк и др., однако при этом снижаются диэлектрические показатели. Введение в полистирол пластификаторов (трифенилфосфата, трикрезил-фосфата и др.) предотвращает растрескивание, однако при содержании пластификатора более 2% заметно снижаются теплостойкость полистирола и разрушающее напряжение при растяжении.

Теплостойкость и механическую прочность полистирола можно повысить путем армирования его стеклянным волокном (стеклянное волокно пропитывают водной дисперсией полистирола, затем высушивают и прессуют). Армированный полистирол характеризуется повышенным разрушающим напряжением при растяжении и изгибе, высокой ударной вязкостью, повышенной теплостойкостью.

Более высокую теплостойкость имеют полимеры замещенных стиролов.

Для улучшения свойств полистирола его сополимеризуют с другими мономерами.

В последние годы значительно увеличился объем производства ударопрочного полистирола марки УПС (привитой сополимер стирола к каучуку), имеющего высокую ударную вязкость и другие улучшенные показатели механических свойств.

Все большее развитие получает производство АБС-пластиков, представляющих собой сополимер стирола, акрилонитрила и бутадиена.

Прямой сополимеризацией этих трех мономеров не удается получить продукт с заданными свойствами, поэтому, как и при получении ударопрочного полистирола марки УПС, проводят привитую сополимеризацию стирола на полибутадиене и бутадиен-стирольном каучуке. Доля гомополимера стирола в общем выпуске полистирольных пластмасс непрерывно уменьшается.


Похожие посты

Ученые разработали чудодейственную композицию против вируса гриппа А

Avtor

Странные излучения в атмосфере: вскоре на Гавайях и Филиппинах ожидаются мощные землетрясения

Avtor

Сенсационное открытие в Сибири: в суровом регионе нашли останки предков американцев, живших 32000 лет назад

Avtor
Adblock
detector