Образование

Чётные — нечётные числа — Язык чисел

О таинственном влиянии чисел, которые нас окружают, известно с древнейших времен. Каждая цифра имеет свое особое значение и обладает своим воздействием. И деление чисел на четные и нечетные является очень важным для определения нашей дальнейшей судьбы.

 

Чет и нечет

В нумерологии (науке о связях чисел с жизнью людей) нечетные числа (1, 3, 5, 7, 9, 11 и так далее) считаются выразителями мужского начала, которое в восточной философии называется — ян. Их также называют солнечными, потому что они несут энергию нашего светила. Такие цифры отражают поиск, стремление к чему-то новому.

Четные же числа (которые без остатка делятся на 2) говорят о женской природе (в восточной философии — инь) и энергетике Луны. Их суть в том, что они изначально тяготеют к двойке, поскольку делятся на нее. Эти цифры говорят о стремлении к логическим правилам отображения действительности и нежелании выйти за их пределы.

Другими словами: четные цифры более правильны, но в то же время более ограничены и прямолинейны. А нечетные способны помочь выбраться из скучного и серого бытия.

Нечетных чисел больше (ноль в нумерологии имеет собственное значение и не считается четным числом) — пять (1, 3, 5, 7, 9) против четырех (2,4,6, 8). Их более сильная энергия выражается в том, что при их сложении с четными числами снова получается нечетное число.

Противопоставление четных и нечетных чисел входит в общую систему противоположностей (один -много, мужчина — женщина, день -ночь, правый — левый, добро — зло и т.п.). При этом с нечетными числами связаны первые понятия, а с четными-вторые.

Таким образом, всякое нечетное число обладает мужскими характеристиками: властностью, резкостью, способностью к восприятию чего-то нового, а любое четное наделено женскими свойствами: пассивностью, стремлением сгладить любой конфликт.

 

Значения цифр

 

Значения цифр

Всем цифрам в нумерологии свойственны определенные значения:

  • Единица несет в себе активность, целеустремленность, инициативу.
  • Двойка — восприимчивость, слабость, готовность подчиняться.
  • Тройка — веселье, артистизм, удачливость.
  • Четверка — трудолюбие, однообразие, скуку, безвестность, поражение.
  • Пятерка — предприимчивость, успехи в любви, движение к цели.
  • Шестерка — простоту, спокойствие, тяготение к домашнему уюту.
  • Семерка — мистику, таинственность.
  • Восьмерка — материальные блага.
  • Девятка — интеллектуальное и духовное совершенство, высокие достижения.

Как видим, нечетные цифры обладают гораздо более яркими свойствами. Согласно учению знаменитого древнегреческого математика Пифагора, именно они являлись олицетворением добра, жизни и света, а также символизировали правую от человека сторону — сторону удачи.

Четные же цифры ассоциировались с неудачной левой стороной, злом, тьмой и смертью. Эти взгляды пифагорейцев позже отразились в некоторых приметах (например, что нельзя живому человеку дарить четное количество цветов или что встать с левой ноги — к неудачному дню), хотя у разных народов они могут быть разными.

 

Влияние четных и нечетных чисел на нашу жизнь

 

С каких чисел начинается изучение в основной школе?

Первыми идут натуральные. Они также сначала появились исторически. Человечеству было необходимо подсчитывать предметы. Причем при счете ноль не используется, поэтому он не входит в группу натуральных чисел. Здесь все целые, которые больше единицы.

«>

Именно для них впервые дается определение четности. Чтобы понять, какое число нечетное, нужно запомнить признак четного. Оно заканчивается на одну из цифр: 0, 2, 4, 6, 8. Все остальные будут нечетными. Минимальное из них равно единице. Максимального не существует.

Какие числа идут дальше?

Целые. В их множество входит уже ноль и все отрицательные числа. Цепочка натуральных чисел была ограничена слева, а вправо продолжалась бесконечно. С целыми оказывается бесконечное количество чисел и слева от нуля.

В этот момент немного меняется определение четности. Оно теперь должно делиться на два без остатка. Значит, нечетные числа при делении на два дают ответ с остатком.

Причем даже вводится общая запись: для четных — 2n, нечетные — (2n+1). Если для натуральных не существует только максимального четного или нечетного, то у целых нет и минимального.

А что потом?

Рациональные (другое название — вещественные) числа. Кроме уже упомянутых, в это множество входят еще и дроби. То есть числа, которые можно представить в виде двух. Первое из них является числителем и представляется в виде целого числа. Второе — знаменатель, который никогда не равен нулю.

Кстати, для них не вводится понятие четности. Поэтому нечетные числа, записанные в виде дроби, не существуют вовсе.

«>

Какие результаты дают действия с четными и нечетными числами?

Их можно рассмотреть в порядке усложнения арифметического действия. Тогда первым и вторым пойдут сложение и вычитание. Неважно, какое из них выполняется, ответ будет зависеть только от начальной пары чисел. К примеру, если исходные числа четные, то результат действия будет делиться на два. Такой же итог будет, если стоит разность или сумма нечетных чисел. Чтобы получить нечетное число, придется складывать или вычитать четное с нечетным.

Это легко можно проверить, используя их общую запись. Например, сложение двух четных чисел: 2n+2n = 4n = 2*2n. Здесь 2n — четное число, которое еще умножается на два. Значит, оно точно будет делиться нацело на двойку. То есть ответ — четный.

При сложении четного с нечетным имеем такую запись: 2n + (2n + 1) = 4n + 1. Первое слагаемое — четное число, к которому прибавляется единица. Последнее слагаемое не даст разделить этот результат на два нацело.

«>

Третье действие — умножение. При его выполнении всегда будет четный ответ, если есть хотя бы один множитель четный. В ситуации, когда перемножаются два нечетных числа, результатом окажется нечетное.

Для иллюстрации последнего потребуется сделать такую запись: (2n + 1) * (2n + 1) = 4n + 2n + 2n + 1 = 8n + 1. Опять первое слагаемое представляет собой четное число, а единица сделает его нечетным.

С четвертым действием — делением — все не так однозначно. Начать можно с двух четных. Во-первых, может получиться дробь, тогда о четности речи не идет. Во-вторых, результатом бывает целое число. Но и тогда однозначного ответа на вопрос о будущей четности получить невозможно. Оценить ее можно только после выполнения деления. Ответ может быть как четным, так и нечетным.

Если делится нечетное число на четное, то ответ оказывается всегда дробным. Значит, его четность не определяется.

Когда в делении участвуют нечетные числа, то результатом также может оказаться дробь. Но если ответ целый, то он обязательно будет нечетным.

При делении четного на нечетное, как в предыдущей ситуации, возможно два варианта: дробь или целое число. Во втором случае оно всегда будет четным.

Похожие посты

Морфологический разбор слова с примерами и онлайн

Glavnii

Крестовые походы таблица

Glavnii

Сколько планет в солнечной системе — 8 или 9?

Glavnii