Образование

Порядок арифметических действий, скобки | Формулы и расчеты онлайн — Fxyz.ru

Выражения, преобразование выражений

Числовые,буквенные выражения и выражения с переменными в своей записи могут содержать знаки различных арифметических действий. При преобразовании выражений и вычислении значений выражений действия выполняются в определенной очередности, иными словами, нужно соблюдать порядок выполнения действий.

В этой статье мы разберемся, какие действия следует выполнять сначала, а какие следом за ними. Начнем с самых простых случаев, когда выражение содержит лишь числа или переменные, соединенные знаками плюс, минус, умножить и разделить. Дальше разъясним, какого порядка выполнения действий следует придерживаться в выражениях со скобками. Наконец, рассмотрим, в какой последовательности выполняются действия в выражениях, содержащих степени, корни и другие функции.

Сначала умножение и деление, затем сложение и вычитание

В школе дается следующее правило, определяющее порядок выполнения действий в выражениях без скобок:

  • действия выполняются по порядку слева направо,
  • причем сначала выполняется умножение и деление, а затем – сложение и вычитание.

Озвученное правило воспринимается достаточно естественно. Выполнение действий по порядку слева направо объясняется тем, что у нас принято вести записи слева направо. А то, что умножение и деление выполняется перед сложением и вычитанием объясняется смыслом, который в себе несут эти действия.

Рассмотрим несколько примеров применения этого правила. Для примеров будем брать простейшие числовые выражения, чтобы не отвлекаться на вычисления, а сосредоточиться именно на порядке выполнения действий.

На первых порах, чтобы не перепутать порядок выполнения действий при вычислении значения выражения, удобно над знаками действий расставить цифры, соответствующие порядку их выполнения. Для предыдущего примера это выглядело бы так: .

Этого же порядка выполнения действий – сначала умножение и деление, затем сложение и вычитание — следует придерживаться и при работе с буквенными выражениями.

Действия первой и второй ступени

В некоторых учебниках по математике встречается разделение арифметических действий на действия первой и второй ступени. Разберемся с этим.

В этих терминах правило из предыдущего пункта, определяющее порядок выполнения действий, запишется так: если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем – действия первой ступени (сложение и вычитание).

Порядок выполнения арифметических действий в выражениях со скобками


Выражения часто содержат скобки, указывающие порядок выполнения действий. В этом случае правило, задающее порядок выполнения действий в выражениях со скобками, формулируется так: сначала выполняются действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем – сложение и вычитание.

Итак, выражения в скобках рассматриваются как составные части исходного выражения, и в них сохраняется уже известный нам порядок выполнения действий. Рассмотрим решения примеров для большей ясности.

Бывает, что выражение содержит скобки в скобках. Этого бояться не стоит, нужно лишь последовательно применять озвученное правило выполнения действий в выражениях со скобками. Покажем решение примера.

Вообще, когда в выражении присутствуют скобки в скобках, то часто бывает удобно выполнение действий начинать с внутренних скобок и продвигаться к внешним.

Например, пусть нам нужно выполнить действия в выражении (4+(4+(4−6:2))−1)−1. Сначала выполняем действия во внутренних скобках, так как 4−6:2=4−3=1, то после этого исходное выражение примет вид (4+(4+1)−1)−1. Опять выполняем действие во внутренних скобках, так как 4+1=5, то приходим к следующему выражению (4+5−1)−1. Опять выполняем действия в скобках: 4+5−1=8, при этом приходим к разности 8−1, которая равна 7.

Какие действия выполняются первыми: умножение и деление или сложение и…?


  • Если между собой сравнить функции сложение и вычитание с умножением и делением, то умножение и деление всегда рассчитываются в первую очередь.

    В примере такие две функции, как сложение и вычитание, а также умножение и деление равнозначны между собой. Очердность выполнения определяется в порядке очереди слева направо.

    Следует помнить тот факт, что особым приоритетом в примере обладают действия, взятые в круглые скобки. Таким образом, даже если за пределами скобок стоит умножение, а в скобках сложение, следует сначала сложить, а уже потом умножить.

  • Чтобы разобраться в этой теме ,можно рассмотреть все случаи поочередно.

    Сразу учтем,что наши выражения не имеют скобок.

    Итак,если в примере первое действие умножение,а второе-деление,то первым выполняем умножение.

    11:1

    Если в примере первое действие деление,а второе умножение,то первым делаем деление.

    1:11

    В таких примерах действия выполняются в порядке слева направо,независимо от того,какие используются числа.

    Если же в примерах помимо умножения и деления имеются сложение и вычитание,то умножение и деление делаются в первую очередь,а потом сложение и вычитание.

    В случае со сложением и вычитанием также нет разницы,какое из этих действий делается первым.Соблюдается порядок слева направо.


  • Рассмотрим разные варианты:

    1) 1+2*3=7

    В данном примере первое действие, которое необходимо произвести это умножение, а затем уже сложение.

    2)2+3*5/15=3

    В этом случае, вы сначала умножаете значения, затем делите, а только потом складываете.

    3) (2+3)*3/15=1

    В этом случаи вы должны сначала сделать все действия в скобках, а затем только делать умножение и деление.

    А так надо запомнить, что в любой формуле сначала выполняются действия как умножение и деление, а затем только вычитание и сложение.

    Также с числами, которые стоят в скобках нужно посчитать их в скобках, а только потом делать различные манипуляции, помня последовательность описанную выше.

  • Первыми будут следующие действия: умножение и деление.

    Только затем выполняются сложение и вычитание.

    Однако если есть скобка, то в первую очередь будут выполняться действия, которые находятся в них. Даже если это сложение и вычитание.

    Например:

    4+5*4

    В этом примере сначала выполним умножение, то 4 на 5, затем к 20 прибавим 4. Получится 24.

    Но если будет так: (4+5)*4, то сначала выполним сложение, получаем 9. Затем 9 умножаем на 4. Получаем 36.


  • Какие действия выполняются первыми: умножение и деление или сложение и...?

    Если в примере присутствуют все 4 действия, то сначала идет умножение и деление, а потом сложение и вычитание.

    Или в примере 3 разных действия, то первым будет либо умножение (либо деление), а потом либо сложение (либо вычитание).

    Когда НЕТ СКОБОК.

    Пример: 4-2*5:10+8=11,

    1 действие 2*5 (10);

    2 действие 10:10 (1);

    3 действие 4-1 (3);

    4 действие 3+8 (11).

    Какие действия выполняются первыми: умножение и деление или сложение и...?

    Все 4 действия можно разделить на две основные группы, в одной — сложение и вычитание, в другой — умножение и деление. Первыми будет то действие, который первый по счету в примере, то есть самый левый.

    Пример: 60-7+9=62, сначала нужно 60-7, потом то, что получится (53) +9;

    Пример: 5*8:2=20, сначала нужно 5*8, потом то, что получится (40) :2.

    Какие действия выполняются первыми: умножение и деление или сложение и...?

    Когда ЕСТЬ СКОБКИ в примере, то сначала выполняются действия которые в скобке (согласно вышеперечисленными правилам), а потом остальные как в обычно.

    Пример: 2+(9-8)*10:2=7.

    1 действие 9-8 (1);

    2 действие 1*10 (10);

    3 действие 10:2 (5);

    4 действие 2+5 (7).


  • Зависит как записано выражение, рассмотрим на простейшем числовом выражении:

    18 — 6:3 + 10х2 =

    Сначала выполняем действия с делением и умножением, затем по очереди, слева направо, с вычитанием и сложением: 18-2+20 = 36

    Если это выражение со скобками, тогда выполняют действия в скобках, затем умножение или деление и в заключение сложение/вычитание, например:

    (18-6) : 3 + 10 х 2 = 12:3 + 20 = 4+20=24

    Вс правильно: сначала выполняют умножение и деление, затем сложение и вычитание.

  • Если в примере нет скобок, то в первую очередь выполняется умножение и деление по порядку , а потом уже сложение и вычитание, то же по порядку .

    Примеры ;

    8+3-2х1=9

    1)2х1=2

    2)8+3=11

    3)11-2=9

    27:9+8х6-2=49

    1)27:9=3

    2)8х6=48

    3)3+48-51

    4)51-2=49

    Какие действия выполняются первыми: умножение и деление или сложение и...?

    Если в примере только умножение и деление, то действия будут выполняться по порядку.

    Примеры :

    12х3:2=18

    1)12х3=36

    2)36:2=18

    90:15Х7=42

    1)90:15=6

    2)6х7=42

    Если в примере только сложение и вычитание, то действия тоже будут выполняться по порядку.

    22-8+6=20

    1)22-8=14

    2)14+6=20

    Какие действия выполняются первыми: умножение и деление или сложение и...?


    В первую очередь выполняются действия в скобках по тем же правилам, то есть сначала умножение и деление, и только потом сложение и вычитание.

    22-(11+3Х2)+14=19

    1)3х2=6

    2)11+6=17

    3)22-17=5

    4)5+14=19

  • Порядок выполнения арифметических действий прописан строго, чтобы не было никаких разночтений при выполнении однотипных вычислений разными людьми. Прежде всего выполняются умножение и деление, потом сложение и вычитание, если действия одного порядка идут одно за другим, то они выполняются в порядке очереди слева направо.

    Если при записи математического выражения используются скобки, то в первую очередь следует выполнить действия указанные в скобках. Скобки помогают изменить очередность при необходимости сперва выполнить сложение или вычитание, а уже после умножение и деление.

    Любые скобки можно раскрыть и тогда порядок выполнения вновь будет правильным:

    6*(45+15) = 6*45 +6*15

  • Лучше сразу в примерах:

    • 1+2*3/4-5=?

    В этом случае выполняем сначала умножение, так как оно стоит левее чем деление. Потом деление. Затем сложение, так по причине более левого расположения и в конце вычитание.

    • 1*3/(2+4)?

    сначала делаем вычисление в скобках, затем умножение и деление.

    • 1+2*(3-1*5)=?

    Сначала делаем действия в скобках: умножение, затем вычитание. После этого идет умножение вне скобок и сложение кв конце.

  • Первоочередно идет умножение и деление. Если есть в примере скобки, то в начале считают действие в скобках. Какой бы знак там ни был!

  • Тут необходимо помнить несколько основных правил:

    1. Если в примере отсутствуют скобки и присутствуют операции — только сложение и вычитание, либо только умножение и деление — в этом случае все действия осуществляются по порядку слева на право.

    Например, 5+8-5=8(выполняем все по порядку — к 5 прибавляем 8, а затем отнимаем 5)

    1. Если в примере присутствуют смешанные операции — и сложение, и вычитание, и умножение, и деление, то в первую очередь выполняем операции умножение и деление, а затем только сложение или вычитание.

    Например, 5+8*3=29 (сначала 8 умножаем на 3, а затем прибавляем 5)

    1. Если в примере имеются скобки, то вначале выполняются действия в скобках.

    Например, 3*(5+8)=39 (сначала 5+8, а затем умножаем на 3)

Что такое умножение? Это умное сложение

При сложении и вычитании, умножении и делении чисел в простых выражениях у детей не возникает трудностей:

  • 5 × 3 = 15;
  • 86 – 9 = 77;
  • 81 : 9 = 9.

В таких вычислениях необходимо только знать правила сложения и вычитания и таблицу умножения.
Когда начинаются более сложные упражнения, примеры состоят из двух и более действий, да еще и со скобками, при решении у детей появляются ошибки. И главная из них – неправильный порядок действий.


Математика: переместительное свойство умножения


Да какая разница?

Действительно, настолько ли это важно – какое действие в примере выполнить первым, какое вторым?

  • Рассмотрим примеры:

10 – 5 + 2 = ?

Если мы будем выполнять действия по порядку, получим:

  1. 10 – 5 = 5;
  2. 5 + 2 = 7.

Попробуем иначе:

  1. 5 + 2 = 7;
  2. 10 – 7 = 3.

Получили два разных ответа. Но так быть не должно, следовательно, порядок выполнения действий имеет значение. Тем более, если в выражении имеются скобки:

25 – (18+2) = ?

Пробуем решить двумя способами:

  1. 25 – 18 + 2 = 9;
  2. 25 – 20 = 5.

Ответы разные, а для того чтобы определить порядок действий, в выражении стоят скобки – они показывают, какое действие нужно выполнить первым. Значит, правильным будет такое решение:

  1. 18 + 2 = 20;
  2. 25 – 20 = 5.

Другого решения у ответа у примера быть не должно.

Итак:

Что важнее – умножение или сложение?

При решении примеров
Расставь порядок действий.
Умножить или разделить – на первом месте.

Для выражений, в которых присутствуют не сложение либо вычитание, а умножение или деление, действует то же правило: все действия с числами выполняются по порядку, начиная с левого:

81 : 9 х 2 = ?

  1. 81 : 9 = 9;
  2. 9 х 2 = 18.

Сложнее случай – когда в одной задаче встречаются умножение или деление со сложением или вычитанием. Каков порядок вычислений тогда?

Рассмотрим пример:

8 : 2 + 2 = ?

Если выполнять все действия по порядку, сначала деление, затем сложение. В итоге получим:

  1. 8 : 2 = 4;
  2. 4 + 2 = 6.

Значит, пример решен правильно. А если в нем будут скобки?

8 : (2 + 2) = ?

  1. 2 + 2 = 4;
  2. 8 : 4 = 2.

То, что заключено в скобки, всегда в приоритете. Для того они и стоят в выражении. Поэтому порядок вычислений в подобных выражениях будет следующим:

  1. Раскрываем скобки. Если их несколько, делаем вычисления для каждых.
  2. Умножение либо деление.
  3. Вычисляем конечный результат, выполняя действия слева направо.

Пример:
81 : 9 + (6 – 2) + 3 = ?

  1. 6 – 2 = 4;
  2. 81 : 9 = 9;
  3. 9 + 4 = 13;
  4. 13 + 3 = 16.

81 : 9 + (6 – 2) + 3 = 16.

А что будет приоритетным: умножение — или деление, вычитание — или сложение, если оба действия встречаются в задаче? Ничего, они равны, в таком случае действует первое правило – действия производятся одно за другим, начиная слева.

Алгоритм решения выражения:

  1. Анализируем задачу – есть ли скобки, какие математические действия нужно будет выполнить.
  2. Выполняем вычисления в скобках.
  3. Делаем умножение и деление.
  4. Выполняем сложение и вычитание.

Пример:

28 : (11 – 4) + 18 – (25 – 8) = ?

Порядок вычисления:

  1. 11 – 4 = 7;
  2. 25 – 8 = 17;
  3. 28 : 7 = 4;
  4. 4 + 18 = 22;
  5. 22 – 17 = 5.

Ответ: 28 : (11 – 4) + 18 – (25 – 8) = 5.

Важно! Если в выражении есть буквенные обозначения, порядок действий остается прежним.

Математические действия с нулем

Круглый нуль такой хорошенький,
Но не значит ничегошеньки.

В примерах нуль как число не встречается, но он может быть результатом какого-либо промежуточного действия, например:

5 × (8 : 2 – 4) = ?

  1. 8 : 2 = 4;
  2. 4 – 4 = 0;
  3. 5 × 0 = ?

При умножении на 0 правило гласит, что в результате всегда получится 0. Почему? Объяснить можно просто: что такое умножение? Это одно и то же число, сложенное с себе подобным несколько раз. Иначе:

0 × 5 = 0 + 0 + 0 + 0 + 0 = 0;

Деление на 0 бессмысленно, а деление нуля на любое число даст в результате всегда 0:

0 : 5 = 0.

Да и как может быть иначе, когда делить-то нечего? Если у вас нет яблок, поделиться с друзьями вам нечем.


Почему нельзя делить на ноль


Напомним другие арифметические действия с нулем:

Умножение и деление на единицу

Математические действия с единицей отличаются от действий с нулем. При умножении или делении числа на 1 получается само первоначальное число:

7 × 1 = 7;

7 : 1 = 7.

Конечно, если у вас есть 7 друзей, и каждый подарил вам по конфете, у вас будет 7 конфет, а если вы их съели в одиночестве, то есть поделились лишь с самим собой, то все они и оказались в вашем желудке.

Вычисления с дробями, степенями и сложными функциями

Это сложные случаи вычислений, которые не рассматриваются в рамках начальной школы.

  • Действия с дробями

Умножение простых дробей друг на друга не представляется сложными, достаточно лишь перемножить числитель на числитель, а знаменатель – на знаменатель.
Пример:

({{2}over{5}} × {{3}over{8}}) = ?

  1. 2 × 3 = 6 — числитель
  2. 5 × 8 = 40 — знаменатель

({{2}over{5}} × {{3}over{8}} = {{6}over{40}})

После сокращения получаем:({{6}over{40}}) = ({{3}over{20}}).

Деление простых дробей не так сложно, как кажется на первый взгляд. Достаточно лишь преобразовать задачу – превратить ее в пример с умножением. Сделать это просто – нужно перевернуть дробь так, чтобы знаменатель стал числителем, а числитель – знаменателем.
Пример:

({{2}over{8}}={{2}over{5}} : {{3}over{5}})=?

({{2}over{8}} : {{3}over{5}} = {{2}over{8}} × {{5}over{3}})

  1. 2 × 5 = 10;
  2. 8 × 3 = 24.

({{2}over{8}} : {{3}over{5}} = {{10}over{24}}={{5}over{12}})

  • Действия со степенями

Если в задаче встречается число, представленное в виде степени, его значение вычисляется прежде всех остальных (можете представить, что оно заключено в скобки – а действия в скобках выполняются первыми).
Пример:

(5² – 7) : 3 = ?

  1. 5² = 5 х 5 = 25;
  2. 25 – 7 = 18;
  3. 18 : 3 = 6.

(5² – 7) : 3 = 6.

Преобразовав число, представленное в виде степени, в обычное выражение с действием умножения, решить пример оказалось просто: сначала умножение, затем вычитание (потому что в скобках) и деление.

  • Действия с корнями, логарифмами, функциями

Поскольку такие функции изучаются только в рамках старшей школы, рассматривать их мы не будем, достаточно только сказать, что они, как и в случае со степенями, имеют приоритет при вычислении: сначала находится значение данного выражения, затем порядок вычислений обычный – скобки, умножение с делением, далее по порядку слева направо.


Похожие посты

Что такое сказуемое и подлежащее 🚩 дать определение подлежащего 🚩 Лингвистика

Glavnii

Словосочетание ТАКИМ ОБРАЗОМ: выделяется запятыми или нет? Нужно ли ставить запятую после вводного словосочетания ТАКИМ ОБРАЗОМ в начале и середине предложения: примеры. В каких случаях словосочетание ТАКИМ ОБРАЗОМ выделяется запятыми, а в каких нет?

Glavnii

Эмблемы и символика ГРУ — журнал «Рутвет»

Glavnii
Adblock
detector